Micromechanics modeling of unit cells using CUF beam models and the Mechanics of Structure Genome
نویسندگان
چکیده
A novel approach for the micromechanics analysis of composite structures is developed using refined beam models and the mechanics of structure genome (MSG). The MSG provides a tool to obtain the complete stiffness matrix of general composite materials by asymptotically minimizing the loss of information between the original heterogeneous body and the sought homogenized body. The constitutive information is in this manner extracted from the representative volume without the need of ad-hoc assumptions and in one single loading step. The local fields are then straightforwardly recovered using the same unknowns of the original homogenization problem, with no need of additional analyses. This work proposes the use of higher-order beam models based on the Carrera unified formulation (CUF) to solve the micromechanics problem by means of MSG. The fibers, or equivalent constituents, are discretized along the longitudinal direction with beam elements and the unknown variables are expanded over the remaining two local coordinates making use of Legendre-class polynomial sets, denoted to as Hierarchical Legendre Expansions (HLE). In addition, non-local expansion domains with curved boundaries are defined to capture the exact shape of the constituents independently of the refinement of the model. In this sense, the quality of the approximation is controlled by the polynomial order of the beam model, which is introduced in the analysis as a user input, and the size of the computational problem can be reduced for many typical microstructures with no loss of accuracy. A.G. de Miguel, A. Pagani and E. Carrera MUL Group, Politecnico di Torino, 24 Corso Duca degli Abruzzi, Turin (TO) 10129, Italy W. Yu Purdue University, 480 W Stadium Ave, West Lafayette, IN 47907, USA
منابع مشابه
Propagation of Matrix Cracking and Induced Delaminatin in Cross-Ply Composite Beams Subjected to Bending Loads
Due to the mismatch of mechanical properties in composite laminates, propagation of delami-nation is considered as a severe damage mechanism in beams with various lay-up configurations. Delamination can be generated due to matrix cracking propagation or it can also be initiated due to the manufacturing process before using composite beams. Using a micromechanics model, this study is aimed to in...
متن کاملStudying the Mechanical and Thermal Properties of Polymer Nanocomposites Reinforced with Montmorillonite Nanoparticles Using Micromechanics Method
In this study, the mechanical and thermal behavior of the nano-reinforced polymer composite reinforced by Montmorillonite (MMT) nanoparticles is investigated. Due to low cost of computations, the 3D representative volume elements (RVE) method is utilized using ABAQUS finite element commercial software. Low density poly ethylene (LDPE) and MMT are used as matrix and nanoparticle material, respec...
متن کاملCrack Influences on the Static and Dynamic Characteristic of a Micro-Beam Subjected to Electro Statically Loading
In the present work the pull-in voltage of a micro cracked cantilever beam subjected to nonlinear electrostatic pressure was studied. Two mathematical models were employed for modeling the problem: a lumped mass model and a classical beam model. The effect of crack in the lumped mass model is the reduction of the effective stiffness of the beam and in the beam model; the crack is modeled as a m...
متن کاملWave Propagation Analysis of CNT Reinforced Composite Micro-Tube Conveying Viscose Fluid in Visco-Pasternak Foundation Under 2D Multi-Physical Fields
In this research, wave propagation analysis in polymeric smart nanocomposite micro-tubes reinforced by single-walled carbon nanotubes (SWCNT) conveying fluid is studied. The surrounded elastic medium is simulated by visco-Pasternak model while the composite micro-tube undergoes electro-magneto-mechanical fields. By means of micromechanics method, the constitutive structural coefficients of nano...
متن کاملI-40: Male Genome Programming, Infertility and Cancer
Background: During male germ cells differentiation, genomewide re-organizations and highly specific programming of the male genome occur. These changes not only include the large-scale meiotic shuffling of genes, taking place in spermatocytes, but also a complete “re-packaging” of the male genome in post meiotic cells, leading to a highly compacted nucleo-protamine structure in the mature sperm...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2017